Module 3 Additional Resources#

LLM Gateway Access#

How This Module Works#

All LLM access in this module uses a gateway abstraction — a centralised HTTPS endpoint that handles authentication, rate limiting, and model routing. This mirrors enterprise practice.

Default configuration:

  • LLM_BASE_URLhttps://jbchat.jonbowden.com.ngrok.app (JBChat gateway)

  • LLM_API_KEY — provided by your instructor (optional)

Models Used in This Module#

  • phi3:mini - Microsoft’s compact model (mandatory)

  • llama3.2:1b - Meta’s efficient small model (optional comparison)


Official Documentation#

API References#

JBChat Endpoints#

  • POST /chat/direct - Direct LLM chat (used in this module)

  • POST /chat - Chat with RAG support

  • POST /upload - Upload files for RAG

  • GET /files - File management

  • GET /search - Search indexed content

  • GET /health - Health check

Enterprise AI Concepts#


Video Tutorials#

LLM Fundamentals#

Ollama Setup#


Further Reading#

Enterprise AI Safety#

Hallucinations and Reliability#


Practice Platforms#


Preparing for Module 5 (RAG)#

Module 5 will cover Retrieval-Augmented Generation (RAG). To prepare:

  1. Understand embeddings - How text is converted to vectors

  2. Learn about vector databases - FAISS, Chroma, Pinecone

  3. Review chunking strategies - How to split documents for retrieval

Preview Resources#