Module 6 Resources — LLM APIs (Python)#

CodeVision Academy

This page provides additional resources for deepening your understanding of building robust LLM API integrations.


Official Documentation#

Python HTTP Libraries#

  • Requests Library Documentation — The de facto standard for HTTP in Python. Essential reading for understanding timeouts, sessions, and error handling.

  • HTTPX Documentation — Modern async-capable HTTP client. Good for high-concurrency LLM applications.

LLM Provider APIs#


Reliability Patterns#

Retry & Backoff#

Circuit Breakers#


JSON & Validation#

JSON Schema#

Structured Output from LLMs#


Testing#

Mocking in Python#

Testing Best Practices#


Production Concerns#

Logging#

Monitoring & Observability#

Cost Management#


Enterprise Patterns#

API Design#

Security#


Books & In-Depth Reading#

  • “Designing Data-Intensive Applications” by Martin Kleppmann — Chapter on distributed systems reliability applies directly to LLM integration.

  • “Release It!” by Michael Nygard — Patterns for building resilient production systems.

  • “Building LLM Apps” by Chip Huyen — Modern guide to LLM application development.


Tools Used in This Module#

Tool

Purpose

Installation

requests

HTTP client

pip install requests

json

JSON parsing

Built-in

dataclasses

Structured data

Built-in (Python 3.7+)

typing

Type hints

Built-in


Practice Projects#

  1. Build a CLI LLM client — Create a command-line tool that takes prompts and returns structured responses with proper error handling.

  2. Implement a caching layer — Build a response cache with TTL (time-to-live) expiration for LLM calls.

  3. Create a mock server — Build a simple Flask/FastAPI mock server that simulates LLM API responses for testing.

  4. Add monitoring — Instrument an LLM client with metrics (latency histograms, error rates, token counts).

  5. Build a RAG pipeline — Combine Module 5 (embeddings) and Module 6 (LLM API) skills to build a complete question-answering system.


Quick Reference#

Retry Logic Template#

def retry_with_backoff(fn, max_retries=3, base_delay=1.0):
    for attempt in range(max_retries + 1):
        try:
            return fn()
        except Exception as e:
            if attempt == max_retries:
                raise
            time.sleep(base_delay * (2 ** attempt))

JSON Validation Template#

def validate_response(text, required_fields):
    data = json.loads(text.strip())
    missing = [f for f in required_fields if f not in data]
    if missing:
        raise ValueError(f"Missing fields: {missing}")
    return data

Timeout Pattern#

response = requests.post(
    url,
    json=payload,
    timeout=(5, 60)  # (connect, read)
)